

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港 黄竹坑追37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

15CA1203 04-01

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Expiry Date:

Manufacturer:

B&K

B&K

Type/Model No .:

2236

4188

Serial/Equipment No.:

2100736

2288941

Adaptors used:

Item submitted by

Customer Name:

Lam Geotechnics Limited

Address of Customer:

Request No.

Date of receipt:

03-Dec-2015

Date of test:

04-Dec-2015

Reference equipment used in the calibration

Description:

Signal generator

Signal generator

Multi function sound calibrator

Model: B&K 4226

DS 360

DS 360

Serial No. 2288444 33873

61227

19-Jun-2016 16-Apr-2016 16-Apr-2016

Traceable to:

CIGISMEC CEPREI CEPRE

Ambient conditions

Temperature:

Relative humidity: Air pressure:

22 ± 1 °C 50 ± 10 %

1010 ± 10 hPa

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2, replaced by an equivalent capacitance within a tolerance of +20%

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

05-Dec-2015

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

C Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

G/F, 9/F, 12/F, 13/F & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃门坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

15CA1203 04-01

Page

2

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
3	C	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Fung Chi Yip 04-Dec-2015 End

Checked by:

Date:

Lam Tze Wai 05-Dec-2015

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

16CA0413 02

Page

of

Tel: (852) 2873 6860

Fax: (852) 2555 7533

2

Item tested

Description:
Manufacturer:
Type/Model No.:

Sound Level Meter (Type 1)

Microphone B & K 4950 Preamp B & K ZC0032

Serial/Equipment No.: Adaptors used:

2250-L 2722310

2698702

13318

Item submitted by

Customer Name:

Lam Geotechnics Limited

Address of Customer:

Request No.:

42 4-- 0040

Date of receipt:

13-Apr-2016

Date of test:

09-May-2016

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Model: B&K 4226 Serial No. 2288444 Expiry Date: 19-Jun-2016

Traceable to: CIGISMEC

Signal generator Signal generator

DS 360 DS 360 33873 61227 18-Apr-2017 18-Apr-2017 CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity: Air pressure:

60 ± 10 % 1005 ± 5 hPa

Test specifications

 The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

 The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.

 The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

in/Fena Jun Qi

Actual Measurement data are documented on worksheets.

Huand

Approved Signatory:

Date:

10-May-2016

Company Chor

SENGMESSES COLLEGE STOS * OLL SENGM

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Soils & Materials Engineering Co. Ltd

Form No.CARP152-1/Issue 1/Rev C/01/02/2007

G/F, 9/F, 12/F, 13/F, & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港 黄竹坑 道 3 7 號 利 達 中 心 地 下, 9 樓, 1 2 樓, 1 3 樓 及 2 0 樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.: 16CA0413 02 Page 2 of

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
1000.	Gubicot.	otatus.	oncortainty (ab)	, actor
Self-generated noise	Α	Pass	0.3	
	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	Α	Pass	0.3	
	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Fung Chi Yip 09-May-2016 End

Checked by:

Date:

J.Q. Feng 10-May-2016

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No CARP152-2/Issue 1/Rev C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/E., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

16CA0519 02

Page

0

2

Item tested

Description: Manufacturer: Type/Model No.: Sound Level Meter (Type 1) B & K 2250-L

2722311

B & K 4950 2698703

Microphone

Preamp B & K ZC0032 13321

Serial/Equipment No.: Adaptors used:

Item submitted by

Lam Geotechnics Limited

Customer Name: Address of Customer:

Request No.:

Date of receipt:

19-May-2016

Date of test:

21-May-2016

Reference equipment used in the calibration

Description:

or

Serial No.

Expiry Date: 19-Jun-2016

Traceable to: CIGISMEC CEPREI

CEPRE

Multi function sound calibrator Signal generator Signal generator B&K 4226 DS 360 DS 360

Model:

2288444 33873 61227

73 18-Apr-2017 27 18-Apr-2017

Ambient conditions

Temperature: Relative humidity:

Air pressure:

21 ± 1 °C 55 ± 10 % 1005 ± 5 hPa

Test specifications

 The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.

 The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Ain/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Huang Jian

Approved Signatory:

Date:

23-May-2016

Company Chop:

SPOS ***OIT

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No CARP152-1/Issue 1/Rev C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.: 16CA0519 02

Page

2

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test: Subtest:		Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	Α	Pass	0.3	
2 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	С	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leg	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
ALTERNATION OF STREET	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	Α	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
3.0	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Fung Chi Yip

Date: 21-May-2016

- End

Checked by:

Date:

Lam Tze Wai 23-May-2016

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No CARP152-2/Issue 1/Rev C/01/02/2007

G/F, 9/F, 12/F, 13/F & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

16CA0307 02

Page

of

2

Item tested

Description: Manufacturer: Sound Level Meter (Type 1)

Microphone B & K Preamp B & K

Type/Model No.: Serial/Equipment No.: 2250-L 2701778

4950 2755097 ZC0032 19556

Adaptors used:

Item submitted by

Lam Geotechnics Ltd.

Customer Name: Address of Customer:

Request No.: Date of receipt:

-07-Mar-2016

Date of test:

08-Mar-2016

Reference equipment used in the calibration

Description:

Model:

Serial No. 2288444 Expiry Date: 19-Jun-2016 Traceable to: CIGISMEC

Multi function sound calibrator Signal generator Signal generator B&K 4226 DS 360 DS 360

33873 61227

16-Apr-2016 16-Apr-2016 CEPREI CEPREI

Ambient conditions

Temperature:

21 ± 1 °C 50 ± 10 %

Relative humidity: Air pressure:

1010 ± 5 hPa

Test specifications

 The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580; Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

 The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

 The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Actual Measurement data are documented on worksheets

Approved Signatory:

Date:

09-Mar-2016

Company Chop:

SENGINEERING COMPANY STORY OF THE STORY OF

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

C Soils & Materials Engineering Co., Ltd.

Form No CARP152-1/Issue 1/Rev C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

16CA0307 02

Page

of

Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances,

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0,3 0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated

Calibrated by:

Fung Chi Yip Date: 08-Mar-2016

Checked by:

Date:

Lam Tze Wai 09-Mar-2016

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

Soils & Materials Engineering Co . Ltd.

Form No CARP152-2/Issue 1/Rev C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

16CA0127 02

Page

Tel: (852) 2873 6860

Fax: (852) 2555 7533

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer:

B&K

B&K

Preamp B&K

Type/Model No.: Serial/Equipment No .: 2250-L 3002695

4950 2940839 ZC0032

Adaptors used:

18582

Item submitted by

Customer Name:

Lam Geoechnics Ltd

Address of Customer:

Request No.

Date of receipt:

27-Jan-2016

Date of test:

28-Jan-2016

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Model: B&K 4226 Serial No.

Expiry Date: 19-Jun-2016

Traceable to:

Signal generator Signal generator DS 360 DS 360 2288444 33873 61227

16-Apr-2016 16-Apr-2016 CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity:

60 ± 10 %

Air pressure:

1010 ± 5 hPa

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580; Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

29-Jan-2016

Company Chop:

Huang-Jian-Nin/Feng Jun Qi

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No CARP152-1/Issue 1/Rev C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

16CA0127 02

Page

of

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	Α	Pass	0.3	
	С	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	Α	Pass	0.3	
	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Checked by:

Fung Chi Yip

28-Jan-2016

Date: 29-Jan-2016

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No CARP152-2/Issue 1/Rev C/01/02/2007

香港 黄竹坑 道 3 7 號 利 達中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

16CA0513 01-02

Page:

117

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: Rion Co., Ltd.

Serial/Equipment No.:

NC-73 10465798

Adaptors used:

-

Item submitted by

Curstomer:

Lam Geotechnics Ltd.

Address of Customer:

Request No.:

Date of receipt:

13-May-2016

Date of test:

17-May-2016

Reference equipment used in the calibration

Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B	Serial No. 2412857 2239857 2346941 61227 US36087050 GB41300350	Expiry Date: 14-Apr-2017 28-Apr-2017 26-Apr-2017 18-Apr-2017 19-Apr-2017	Traceable to: SCL CEPREI CEPREI CEPREI CEPREI
Universal counter	53132A	MY40003662	19-Apr-2017 19-Apr-2017	CEPREI CEPREI

Ambient conditions

Temperature: Relative humidity: 22 ± 1 °C 55 ± 10 %

Air pressure:

1010 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2. The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference
 pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure
 changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Approved Signatory:

Date:

18-May-2016

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co. Ltd.

Form No CARP156-1/Issue 1 Rev D/01/03/2007

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

16CA0513 01-02

Page

2

of

2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Factor of the second			(Output level in dB re 20 µPa)
Frequency Shown Hz	Output Sound Pressure Level Setting dB	Measured Output Sound Pressure Level dB	Estimated Expanded Uncertainty dB
1000	94.00	93.96	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.001 dB

Estimated expanded uncertainty

0.005 dB

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 967.3 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.8 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Date:

Fung Chi Yip \ 17-May-2016 Checked by:

Date:

Lam Tze Wai 18-May-2016

17-Way-2016

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co. Ltd.

Form No CARP156-2/Issue 1/Rev C/01/05/2005

Calibration Certificate

Certificate Number 2016004065

Customer:

LAM Environmental Services Ltd

Model Number Serial Number

CAL200 13098 **Pass**

Test Results Initial Condition

As Manufactured

Description

Larson Davis CAL200 Acoustic Calibrator

Procedure Number Technician

D0001.8386 Scott Montgomery Calibration Date 6 May 2016

Calibration Due

Temperature Humidity

24 °C ± 0.3 °C 37 %RH ± 3 %RH

Static Pressure

101.0 kPa ± 1 kPa

Evaluation Method

The data is aquired by the insert voltage calibration method using the reference microphone's open circuit sensitivity. Data reported in dB re 20 µPa.

Compliance Standards

Compliant to Manufacturer Specifications per D0001.8190 and the following standards:

IEC 60942:2003

ANSI S1.40-2006

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Date /04/2015 /07/2016	Cal Due 09/04/2016 04/07/2017	Cal Standard 001021 001051
	ADVITAGO SANDON LOS CARROS PROCESOS DE CONTROLES.	
/07/2016	04/07/2017	001051
/20/2015	08/20/2016	005446
/09/2015	10/09/2016	006506
/20/2015	08/20/2016	006507
/17/2015	08/17/2016	006511
/07/2015	05/07/2016	007310
	09/2015 20/2015 17/2015	09/2015 10/09/2016 (20/2015 08/20/2016 (17/2015 08/17/2016

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

16CA0805 02

Page

of

2

Item tested

Description:
Manufacturer:
Type/Model No.:

Sound Level Meter (Type 1) B & K 2250-L 3006790 Microphone B & K 4950 2827240

B & K ZC0032 21213

Adaptors used:

Item submitted by

Serial/Equipment No.:

Customer Name:

Lam Geotechnics Ltd.

Address of Customer:

Request No.:

.

Date of receipt:

05-Aug-2016

Date of test:

08-Aug-2016

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator Signal generator Model: B&K 4226 DS 360

DS 360

Serial No. 2288444

33873 61227 Expiry Date:

18-Jun-2017 18-Apr-2017 18-Apr-2017 Traceable to: CIGISMEC

CEPREI CEPREI

Ambient conditions

Temperature:

Relative humidity: Air pressure: 21 ± 1 °C 60 ± 10 %

1000 ± 5 hPa

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Huang Jian Ma/Feng Jun Qi

Date: 09-Aug-2016

Company Chop:

ENGINE CHARGE STATE OF THE STA

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

16CA0805 02

Page

(

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
1691.	Juniest.	otatus.	and the state of t	
Self-generated noise	Α	Pass	0.3	
	С	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leg	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	Α	Pass	0.3	
. , , ,	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
• •	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
3 2	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
·	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

End

Checked by:

| Fung Chi Yip | Cam Tze Wai | | Date: 09-Aug-2016

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - M Operator		Rootsmeter Orifice I.I		0438320 3166	Ta (K) - Pa (mm) -	293 748.03
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00	1.4270 1.0220 0.9100 0.8730 0.7180	3.2 6.4 7.9 8.8 12.7	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
0.9967 0.9925 0.9904 0.9892 0.9840	0.6985 0.9711 1.0883 1.1332 1.3705	1.4150 2.0010 2.2372 2.3464 2.8299	0.9957 0.9915 0.9893 0.9882 0.9830	0.6977 0.9701 1.0872 1.1320 1.3691	0.8851 1.2517 1.3995 1.4678 1.7702
Qstd slo intercep coeffici y axis =	t (b) = ent (r) =	2.10714 -0.05158 0.99978 	Qa slop intercep coeffici	t (b) =	1.31946 -0.03226 0.99978

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

TESTING	Calib	ration [Data for I	High Vol	ume San	npler (TS	P Sampler)	
Location :		CMA1b				Calbratio	n Date	:	12-Sep-16
Equipment no. :		HVS001				Calbratio	n Due Date	:	13-Nov-16
CALIBRATION OF CONTI	NUOUS FI	OW RECO	RDER						
				Ambient C	Condition				
Temperature, T _a		302			Pressure, P		10	010	mmHg
			Orifice	Transfer Sta	ndard Inform	ation			
Equipment No.		Ori002		Slope, m _c	2.107	14	Intercept, bc		-0.05158
Last Calibration Date	20-May-16				(H	x Pa / 10	13.3 x 298 / T	r _a) 1/2	
Next Calibration Date		20-May-1	7		=		$Q_{std} + b_c$	860 USS	
				Calibration	n of TSP				
Calibration	Mai	nometer Re	eading	Q _{std} Continuous Flow			IC		
Point	н (inches of v	water)	(m³ / min.)		Recorder, W		(W(P _a /1013.3×298/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-a	axis	((CFM)	Y-axis	
1	1.2	1.2	2.4	0.7	536		12 11.900		11.9008
2	2.2	2.2	4.4	1.0	117	20		19.8347	
3	3.5	3.5	7.0	1.2	697		26		25.7852
4	4.5	4.5	9.0	1.4	364		30		29.7521
5	5.5	5.5	11.0	1.5	855		34		33.7190
By Linear Regression of Y	on X								
	Slope, m	=	25.7	7206	Int	ercept, b =	-6.9	9594	
Correlation C	oefficient*	=	0.9	984		,			
Calibration	Accepted	=	Yes/	'No**					
101000									
* if Correlation Coefficient <	0.990, che	eck and reca	alibration aga	in.					
** Delete as appropriate.									
Remarks : As per client's	provided i	nformation,	the equipme	nt reference r	no. of the calib	orated High Vo	olume Sampler ha	as been	
re-assigned fr	om EL452	to HVS001	with respect	to the update	in quality mar	nagement syst	em.		
Calibrated by :	Ja	ackey MA				Checked I	ру	:	Pauline Wong
Date :	12	2-Sep-16				Date		:	12-Sep-16

ILUTINE										
Location	:	CMA1b				Calibrati	ion Date	: _	11-Nov-16	
Equipment no.	:	HVS001				Calibrati	ion Due Date	:	11-Jan-17	
	10 BC 1000							, -		
CALIBRATION OF CONT	TINUOUS FL	OW RECO	RDER							
				Ambient C	ondition					
Temperature, T _a	T	293	3	Kelvin	Pressure, P.	1	1	019	mmHg	
	THE REAL PROPERTY.	Name of the last	Orifice	Transfer Sta	ndard Inform	ation				
Equipment No.		Ori002		Slope, m _c	2.107		Intercept, bc		-0.05158	
Last Calibration Date		20-May-1	6		(H	x P = / 10)13.3 x 298 /	T_{a}		
Next Calibration Date		20-May-1	7		=		$x Q_{std} + b_c$. 47		
				Calibration	n of TSP					
Calibration	Ma	nometer R	eading		std	Contin	nuous Flow		IC	
Point	1	inches of		(m ³ / min.)		Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)		ixis		(CFM)		Y-axis	
1	1.6	1.6	3.2		830	,	27		27.3059	
2	2.6	2.6	5.2		189		33		33.3739	
3	3.9	3.9	7.8		649		43		43.4871	
4	4.9	4.9	9.8	-	270		50	50.5664		
5	6.3	6.3	12.6	27	281		55		55.6231	
By Linear Regression of Y	on X									
	Slope, m	=	35.1	337	Int	ercept, b =	-4	4599		
Correlation	Coefficient*	=		954						
	on Accepted	=	Yes/							
				,,,,,						
* if Correlation Coefficient	< 0.990, che	eck and rec	alibration agai	n.						
** Delete as appropriate.										
Remarks : As per client	t's provided i	nformation,	the equipmen	nt reference n	o. of the calib	orated High V	olume Sampler h	as be	en	
9.7	from EL452	to HVS001	with respect t	o the undate	in quality mar	agement sys	tem			
		ickey MA		spaulo	specify mai	Checked			Pauline Wong	
Calibrated by	-	1-Nov-16				Date	-,	· –	11-Nov-16	
Date .									111101-10	

TESTING	Callb	ration L	ala ioi i	ngn von	ille Sali	ipier (13	or Sampler)	
Location :		CMA2a				Calbratio	on Date	:	12-Sep-16
Equipment no. :		HVS002				Calbratio	on Due Date	:	13-Nov-16
CALIBRATION OF CONTI	NUOUS FL	OW RECO	RDER						
				Ambient Co	ondition				
Temperature, T _a		302	!	Kelvin	Pressure, P	1	10	010	mmHg
			Orifice 1	Transfer Star	ndard Inform	ation			
Equipment No.		Ori002		Slope, m _c	2.107	14	Intercept, bc	T	-0.05158
Last Calibration Date		20-May-16 (H x P _a / 1013.3 x 29					13.3 x 298 / T	r _a) 1/	2
Next Calibration Date		20-May-1	7		=	m _c	$x Q_{std} + b_c$		
				Calibration	of TSP				
Calibration	Ma	nometer R	eading	Q,	std	Contir	nuous Flow	IC	
Point	н	(inches of v	vater)	(m³ /	min.)	Rec	order, W	(W(Pa	/1013.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-a	xis	(CFM)	Y-axis	
1	1.4	1.4	2.8	0.81	120		28	27.7686	
2	2.3	2.3	4.6	1.03	339		34	33.7190	
3	4.3	4.3	8.6	1.40)47		44	43.6364	
4	4.9	4.9	9.8	1.49	79		48		47.6034
5	6.0	6.0	12.0	1.65	549		56		55.5372
By Linear Regression of Y	on X								
	Slope, m	=	31.4	606	Int	ercept, b =	1.3	620	
Correlation (Coefficient*	=	0.99	900					
Calibration	Accepted	=	Yes/	No **					
* if Correlation Coefficient <	0.990, che	eck and reca	alibration agai	n.					
** Delete as appropriate.									
2.27 5	s provided i	nformation,	the equipmer	nt reference no	o. of the calib	orated High V	olume Sampler ha	as beer	1
re-assigned fi	rom EL449	to HVS002	with respect t	o the update i	n quality man	agement svs	tem.		
		ackey MA				Checked		:	Pualine Wong
Calibrated by		2-Sep-16				Date	•	:	12-Sep-16
Date		1992						_	

Location :		CMA2a				: 11-Nov-16			
Equipment no.		HVS002				Calibrati	on Due Date	: 11-Jan-17	
CALIBRATION OF CONTIN	NUOUS FL	OW RECO	RDER						
				Ambient C	ondition				
Temperature, T _a		293		Kelvin	Pressure, Pa	ı	10	019 mmHg	
Great Control of the Control			Orifice 1	Transfer Sta	ndard Inform	ation			
Equipment No.		Ori002		Slope, m _c	2.107	-0.05158			
Last Calibration Date		20-May-1	6		(H	xP _a /10	13.3 x 298 / 1	Γ _a) ^{1/2}	
Next Calibration Date		20-May-1	7		=	m _c :	$Q_{std} + b_c$		
				Calibration	n of TSP				
Calibration	Mai	nometer Re	ading	Q	std	Contin	nuous Flow	IC	
Point	н (inches of v	vater)	(m ³ /	min.)	Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-a	axis	(CFM)		Y-axis	
1	1.8	1.8	3.6	0.9	351		28	28.3172	
2	2.7	2.7	5.4	1.1	398	35		35.3965	
3	4.6	4.6	9.2	1.4	802		46	46.5211	
4	5.5	5.5	11.0	1.6	163		51	51.5778	
5	6.7	6.7	13.4	1.7	814		57	57.6457	
By Linear Regression of Yo	n X								
	Slope, m	=	34.3	3731 ————	Int	ercept, b =	-3.9	9066	
Correlation C	oefficient*	=	0.9	997					
Calibration	Accepted	=	Yes	/Ne**					
				_					
* if Correlation Coefficient <	0.990, che	ck and rec	alibration aga	in.					
** Delete as appropriate.									
5.8° 5.	provided :	nformation	the equipme	nt reference r	o of the call	orated High V	olume Sampler ha	as heen	
Remarks :	provided	niormation,	trie equipme	- Teleferice i	io. or the cam	orated might v	Olume Sampler na	35 Deen	
re-assigned fr	om EL449	to HVS002	with respect	to the update	in quality mar				
Calibrated by		ackey MA				Checked	by	: Pualine Wong	
Date :	1	1-Nov-16		Date :				: 11-Nov-16	

Location :	21100-00-1-0	CMA3a				Calbra	:	12-Sep-16				
Equipment no.		HVS012				Calbra	ation Due Date	:	13-Nov-16			
CALIBRATION OF CONT	INUOUS I	FLOW REC	ORDER									
	Ambient Condition											
Temperature, T _a		302	2	Kelvin	Pressure, P	a		1010	mmHg			
Orifice Transfer Standard Information												
Equipment No.		Ori002		Slope, m _c	2.107	14	Intercept, bo		-0.05158			
Last Calibration Date		20-May-1	6		(Hx	(P _a /10	013.3 x 298 /	T _a)	1/2			
Next Calibration Date		20-May-1	$= m_c \times Q_{std} + b_c$									
Calibration of TSP												
Calibration	Manometer Reading Q std Continuous Flow IC						IC					
Point	Н (inches of	water)	(m ³ /	min.)	Re	corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35				
	(up)	(down)	(difference)	X-a	xis		(CFM)		Y-axis			
1	1.2	1.2	2.4	0.7	536		24		23.8017			
2	1.8	1.8	3.6	0.9	175		32		31.7356			
3	3.2	3.2	6.4	1.2	152		40		39.6695			
4	4.2	4.2	8.4	1.3	886		45		44.6281			
5	5.4	5.4	10.8	1.5	712		50		49.5868			
By Linear Regression of Y	on X											
	Slope, m	=	30.5	105	Int	tercept, b	= 2	.2112				
Correlation C	oefficient*	=	0.99	943								
Calibration	Accepted	=	Yes/	\\0 **								

	1000					
Remarks :	As per clie	ent's	provided information, the equipm	ent reference no. of the calibrated High Volume	Sample	r has been
	re-assigne	ed fro	om EL333 to HVS012 with respec	et to the update in quality management system.		
Calibrated b	у	:	Jackey MA	Checked by	: _	Pauline Wong
Date		:	12-Sep-16	Date	:	12-Sep-16

^{*} if Correlation Coefficient < 0.990, check and recalibration again.

^{**} Delete as appropriate.

Location	:	CMA3a	Calibration Date	:	11-Nov-16	
Equipment no.	:	HVS012	Calibration Due Date	:	11-Jan-17	

CALIBRATION OF CONTINUOUS FLOW RECORDER

Temperature, T _a	293	Kelvin Pressure, Pa	1019	mmHg
-----------------------------	-----	---------------------	------	------

Orifice Transfer Standard Information										
Equipment No.	Ori002	Slope, m _c	2.10714	Intercept, bc	-0.05158					
Last Calibration Date	20-May-16		$(H \times P_a / 1013.3 \times 298 / T_a)^{1/2}$							
Next Calibration Date	20-May-17	$= m_c \times Q_{std} + b_c$								

Calibration of TSP											
Calibration	Ma	nometer R	eading	Q _{std}	Continuous Flow	IC					
Point	H (inches of water)		water)	(m ³ / min.)	Recorder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31					
	(up)	(down)	(difference)	X-axis	(CFM)	Y-axis					
1	1.3	1.3	2.6	0.7984	32	32.3625					
2	2.1	2.1	4.2	1.0081	38	38.4305					
3	3.3	3.3	6.6	1.2575	45	45.5098					
4	4.2	4.2	8.4	1.4155	50	50.5664					
5	5.2	5.2	10.4	1.5723	56	56.6344					

By Linear Regression of Y on X

Slope, m = 30.8649 Intercept, b = 7.3433

Correlation Coefficient* = 0.9982

Calibration Accepted = Yes/Ne**

**	Delete	as a	ppro	priate.
----	--------	------	------	---------

Remarks : As per client's provided information, the equipment reference no. of the calibrated High Volume Sampler has been

re-assigned from EL333 to HVS012 with respect to the update in quality management system.

Calibrated by : Jackey MA Checked by : Pauline Wong

^{*} if Correlation Coefficient < 0.990, check and recalibration again.

TESTING	Callb	ation	Data 101	nigii voi	uille Sai	iihiei (or Sample	,		
Location :		CMA4a				Calbrat	ion Date	:	12-Sep-16	
Equipment no.	No. and the second	HVS004				Calbrat	ion Due Date	:	13-Nov-16	
CALIBRATION OF CON	TINUIOUS	ELOW/BEO	PORNER							
CALIBRATION OF CON	TINUUUS	-LOW REC	OKDEK							
TT	1	200		Ambient C			1	040		
Temperature, T _a		302	2	Kelvin	Pressure, P	a	1	010	mmHg	
			Orifice	Transfer Sta	ndard Infor	mation				
Equipment No.		Ori002		Slope, m _c	2.107		Intercept, bc		-0.05158	
Last Calibration Date		20-May-1	16		(H	x P _a / 1	013.3 x 298 /	$T_a)^{1/2}$	2	
Next Calibration Date		20-May-1	17		=	m _c	$x Q_{std} + b_c$			
				Calibratio	n of TSP					
Calibration	Calibration Manometer Reading		eading	Q,	std	Cont	Continuous Flow		IC	
Point	н	inches of	water)	(m ³ / min.)		Re	ecorder, W	(W(Pa	/1013.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-a	xis	(CFM)			Y-axis	
1	1.4	1.4	2.8	0.81	120	22			21.8182	
2	2.2	2.2	4.4	1.01	117		32		31.7356	
3	3.4	3.4	6.8	1.25	518		44		43.6364	
4	4.4	4.4	8.8	1.42	207		48		47.6034	
5	5.5	5.5	11.0	1.58	355		56		55.5372	
By Linear Regression of Y	on X									
	Slope, m	=	42.7	7983	In	tercept, b =	-11.	.9911		
Correlation C	Coefficient*	=	0.9	952						
Calibration	n Accepted	=	Yes	/No**						
* if Correlation Coefficient	< 0.990, ch	neck and re	calibration ag	ain.						
** Delete as appropriate.										
As per clien Remarks :	t's provided	l informatio	n, the equipme	ent reference	no. of the ca	llibrated Hig	h Volume Sampler	has bee	en	
0.00 (Bit 100 (Bit 10	from EL39	0 to HVS00)4 with respec	t to the undate	e in quality m	anagement	system.			
		ackey MA			,,	Checke			Pauline Wong	
Calibrated by		2-Sep-16				Date	•	:	12-Sep-16	
Date	- 22	20 202 0 2323						99		

IESTING				•				,	
Location :		CMA4a				Calibration	on Date	:	11-Nov-16
Equipment no.		HVS004				Calibration	on Due Date	:	11-Jan-17
			· · · · · · · · · · · · · · · · · · ·						
CALIBRATION OF CON	TIMUOUE	LOWBEO	OBBER						
CALIBRATION OF CON	IINUUUS	-LOW REC	ORDER						
				Ambient 0					
Temperature, T _a		293		Kelvin	Pressure, P	a	10)19	mmHg
			Orifice	Transfer Sta	indard Inform	mation			
Equipment No.		Ori002		Slope, m _c	2.107	14	Intercept, bc		-0.05158
Last Calibration Date		20-May-1	6		(H	XP _a / 10	13.3 x 298 / 1	a) 1/2	***
Next Calibration Date		20-May-1	7	$= m_c \times Q_{std} + b_c$					
				0					
				Calibratio					
Calibration		nometer R		Q _{std}		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Continuous Flow		IC
Point	Н (inches of v	water)	(m ³ / min.)		Rec	Recorder, W)13.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-a	xis	(CFM)			Y-axis
1	1.4	1.4	2.8	0.82	276	25			25.2832
2	2.2	2.2	4.4	1.03	312	32			32.3625
3	3.3	3.3	6.6	1.25	575	41			41.4645
4	4.3	4.3	8.6	1.43	320		46		46.5211
5	5.6	5.6	11.2	1.63	307		52		52.5891
By Linear Regression of Y	on X				3100				
	Slope, m	=	34.3	3403	Int	ercept, b =	-2.7	938	
Correlation C	Coefficient*	=	0.9	982					
Calibration	Accepted	=	Yes/	'No**					
* if Correlation Coefficient	< 0.990, ch	eck and re	calibration aga	ain.					
** Delete as appropriate.									
No.0 60									
Remarks : As per clien	t's provided	information	n, the equipme	ent reference	no. of the ca	librated High	Volume Sampler h	nas been	****
re-assigned	from EL390	0 to HVS00	4 with respect	to the update	in quality ma	anagement sy	stem.		
Calibrated by	Ja	ickey MA				Checked I	by	:	Pauline Wong
Date :	11	1-Nov-16	-			Date		;	11-Nov-16
	,								

Location	:	CMA5b	Calbration Date	:	12-Sep-16
Equipment no.	:	HVS010	Calbration Due Date	:	13-Nov-16

	Mark Harry			Ambient Condition				
emperature, T _a		302		Kelvin Pressur	e, P _a		1010	mmHg
		-	Orifice 7	Fransfer Standard Inf	ormation			
Equipment No.		Ori002		Slope, m _c 2	.10714	Intercept, bo		-0.05158
Last Calibration Date		20-May-1	6		$(HxP_a/10$	13.3 x 298 /	$(T_a)^{1/2}$	
Next Calibration Date		20-May-1	7		$= m_c$	$Q_{std} + b_c$		
				Calibration of TSP				
Calibration	Ma	nometer R	eading	Q _{std}	Contin	uous Flow		IC
Point	н	inches of	water)	(m ³ / min.)	Rec	order, W	(W(P _a /1013	.3x298/T _a) ^{1/2} /35.3
	(up)	(down)	(difference)	X-axis		CFM)	,	Y-axis
1	1.4	1.4	2.8	0.8120		34		33.7190
2	2.2	2.2	4.4	1.0117		42		11.6529
3	3.4	3.4	6.8	1.2518		50		19.5868
4	4.4	4.4	8.8	1.4207		56	5	55.5372
5	5.6	5.6	11.2	1.5996		61	6	60.4959
Linear Regression of Y	on X		·					
	Slope, m	=	34.0	485	Intercept, b =	6	.6876	
Correlation C	coefficient*	=	0.99	985				
Calibration	Accepted	=	Yes/	No**				
- M. W-11		Topological Control						
f Correlation Coefficient <	0.990, che	eck and rec	alibration agai	n.				
Controlation Committee	0.000, 0							

**	Da	lota	20	an	nro	nri	ate.

Remarks : As per client's provided information, the equipment reference no. of the calibrated High Volume Sampler has been

re-assigned from EL222 to HVS010 with respect to the update in quality management system.

Checked by Pauline Wong Calibrated by Jackey MA 12-Sep-16 Date 12-Sep-16 Date

Location		CMA5b	Calibration Date		11-Nov-16
Equipment no.	:	HVS010	Calibration Due Date	:	11-Jan-17

CALIBRATION OF CONTINUOUS FLOW RECORDER

emperature, T _a	293	Kelvin	Pressure, Pa	1019	mmHg
	Or	ifice Transfer Sta	ndard Information		
Equipment No.	Ori002	Slope, m _c	2.10714	Intercept, bc	-0.05158
Last Calibration Date	20-May-16		(HxP	a / 1013.3 x 298 / T _a) ¹	1/2
Next Calibration Date	20-May-17		=	$m_c \times Q_{std} + b_c$	

Ambient Condition

Calibration	Ma	nometer R	eading	Q _{std}	Continuous Flo	w IC
Point	н	(inches of	water)	(m³ / min.)	Recorder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-axis	(CFM)	Y-axis
1	1.4	1.4	2.8	0.8276	32	32.3625
2	2.3	2.3	4.6	1.0539	38	38.4305
3	3.5	3.5	7.0	1.2943	48	48.5438
4	4.6	4.6	9.2	1.4802	52	52.5891
5	5.8	5.8	11.6	1.6591	60	60.6797
Linear Regression of	on X					
	Slope, m	=	33.86	51	Intercept, b =	3.7484
Correlation	Coefficient*	=	0.99	56		
Calibrati	on Accepted	=	Yes/A	e**		

^{*} if Correlation Coefficient < 0.990, check and recalibration again.

**	De	lete	as	appro	priate.
----	----	------	----	-------	---------

Remarks : As per client's provided information, the equipment reference no. of the calibrated High Volume Sampler has been re-assigned from EL222 to HVS010 with respect to the update in quality management system.

 Calibrated by
 :
 Jackey MA
 Checked by
 :
 Pauline Wong

 Date
 :
 11-Nov-16
 Date
 :
 11-Nov-16

 Location
 :
 MA1w
 Calbration Date
 :
 12-Sep-16

 Equipment no.
 :
 HVS008
 Calbration Due Date
 :
 13-Nov-16

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition		A STATE OF THE STATE OF	HK1610369		
Temperature, T _a	302	Kelvin	Pressure, P _a	1010	mmHg

	Orifi	ce Transfer Standar	d Information		
Equipment No.	Ori002	Slope, m _c	2.10714	Intercept, bc	-0.05158
Last Calibration Date	20-May-16		$(HxP_a/$	1013.3 x 298 / T _a)	1/2
Next Calibration Date	20-May-17		= <i>m</i>	$a_c \times Q_{std} + b_c$	

				Calibration of TSP		
Calibration Point	Manometer Reading H (inches of water)		Q _{std} (m ³ / min.)	Continuous Flow	IC (W(P _a /1013.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	34 9000 AC 36000000	(CFM)	Y-axis
1	1.8	1.8	3.6	0.9175	24	23.8017
2	2.6	2.6	5.2	1.0977	32	31.7356
3	4.2	4.2	8.4	1.3886	44	43.6364
4	5.4	5.4	10.8	1.5712	52	51.5703
5	6.6	6.6	13.2	1.7345	58	57.5207
y Linear Regression of Y	on X					
	Slope, m	=	41.44	175 In	tercept, b = -	13.9650
Correlation C	Coefficient*	=	0.99	97		
Calibration	Accepted	=	Yes/A	lo **		

k	if C	Correlation	Coefficient	< 0.990.	check and	recalibration	again.

Remarks: As per client's provided information, the equipment reference no. of the calibrated High Volume Sampler has been

re-assigned from EL080 to HVS008 with respect to the update in quality management system.

 Calibrated by
 :
 Jackey MA
 Checked by
 :
 Pauline Wong

 Date
 :
 12-Sep-16
 Date
 :
 12-Sep-16

Location	:	MA1w	Calibration Date	:	11-Nov-16
Equipment no.	:	HVS008	Calibration Due Date	:	11-Jan-17

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition		HK1610369		
Temperature, T _a	293	Kelvin Pressure, Pa	1019	mmHg

	Orifi	ce Transfer Standar	d Information		
Equipment No.	Ori002	Slope, m _c	2.10714	Intercept, bc	-0.05158
Last Calibration Date	20-May-16		(HxPa/	1013.3 x 298 / T _a)	1/2
Next Calibration Date	20-May-17		= m	$a_c \times Q_{std} + b_c$	

			(Calibration of TSP		
Calibration	Mai	Manometer Reading		Q std	Continuous Flow	IC
Point	н	H (inches of water)		(m ³ / min.)	Recorder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-axis	(CFM)	Y-axis
1	1.6	1.6	3.2	0.8830	22	22.2492
2	2.4	2.4	4.8	1.0760	30	30.3399
3	3.8	3.8	7.6	1.3476	40	40.4532
4	4.9	4.9	9.8	1.5270	46	46.5211
5	6.1	6.1	12.2	1.7009	52	52.5891
By Linear Regression of Y	on X					
	Slope, m	=	36.88	392 In	tercept, b =	-9.7802
Correlation C	oefficient*	=	0.99	93	*	
Calibration	Accepted	=	Yes/A	lo**		

	: C	0	- 0 000			
-	if Correlation	Coemicient	< 0.990.	cneck and	recalibration again.	

Remarks:	As per client's provided information, the equipment reference no. of the calibrated High Volume Sampler has been	
	re-assigned from EL080 to HVS008 with respect to the update in quality management system.	

 Calibrated by
 :
 Jackey MA
 Checked by
 :
 Pauline Wong

 Date
 :
 11-Nov-16
 Date
 :
 11-Nov-16

Location	:	MA1e	Calbration Date	:	12-Sep-16
Equipment no.	:	HVS007	Calbration Due Date	: [13-Nov-16

CALIBRATION OF CONTINUOUS FLOW RECORDER

		Ambient Condition		ga fazir a san a san
Temperature, T _a	302	Kelvin Pressure, Pa	1010	mmHg

	Orifi	ice Transfer Standa	ard Information		
Equipment No.	Ori002	Slope, m _c	2.10714	Intercept, bc	-0.05158
Last Calibration Date	20-May-16		$(HxP_a/$	$1013.3 \times 298 / T_a)$	1/2
Next Calibration Date	20-May-17		= <i>m</i>	$_{c} \times Q_{std} + b_{c}$	

				Calibration of TSP		
Calibration	Ma	nometer Re	eading	Q _{std}	Continuous Flow	IC
Point	H (inches of water)		(m ³ / min.)	Recorder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-axis	(CFM)	Y-axis
1	1.4	1.4	2.8	0.8120	19	18.8430
2	2.6	2.6	5.2	1.0977	31	30.7438
3	4.2	4.2	8.4	1.3886	44	43.6364
4	5.4	5.4	10.8	1.5712	54	53.5538
5	6.7	6.7	13.4	1.7474	62	61.4877
Linear Regression of Y	on X					
	Slope, m	=	45.9	175 Ir	ntercept, b = -1	9.1135

Correlation Coefficient* 0.9991 Yes/No** Calibration Accepted

* if Correlation Coefficient < 0.990, check and recalibration again.

As per client's provided information, the equipment reference no. of the calibrated High Volume Sampler has been

re-assigned from EL455 to HVS007 with respect to the update in quality management system.

Pauline Wong Calibrated by Checked by Jackey MA 12-Sep-16 Date Date 12-Sep-16

Location	:	MA1e	Calibration Date	:	11-Nov-16
Equipment no.	:	HVS007	Calibration Due Date	: [11-Jan-17

CALIBRATION OF CONTINUOUS FLOW RECORDER

		Ambient Condition		
Temperature, T _a	293	Kelvin Pressure, Pa	1019	mmHg

	Orif	ice Transfer Standa	rd Information		
Equipment No.	Ori002	Slope, m _c	2.10714	Intercept, bc	-0.05158
Last Calibration Date	20-May-16		$(HxP_a/$	1013.3 x 298 / T _a)	1/2
Next Calibration Date	20-May-17		= <i>m</i>	$c \times Q_{std} + b_c$	

			С	alibration of TSP		
Calibration Manometer Reading		Q _{std}	Continuous Flow	IC		
Point	н	(inches of	water)	(m ³ / min.)	Recorder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31
	(up)	(down)	(difference)	X-axis	(CFM)	Y-axis
1	1.5	1.5	3.0	0.8558	28	28.3172
2	2.4	2.4	4.8	1.0760	32	32.3625
3	3.7	3.7	7.4	1.3301	40	40.4532
4	5.0	5.0	10.0	1.5422	46	46.5211
5	6.3	6.3	12.6	1.7281	52	52.5891

By	Linear	Regression	of	Y	on X	
----	--------	------------	----	---	------	--

Slope, m 28.3203 Intercept, b = 3.0496

Correlation Coefficient* 0.9964

Calibration Accepted Yes/No**

As per client's provided information, the equipment reference no. of the calibrated High Volume Sampler has been re-assigned from EL455 to HVS007 with respect to the update in quality management system.

Calibrated by Jackey MA Checked by Pauline Wong Date 11-Nov-16 Date 11-Nov-16

^{*} if Correlation Coefficient < 0.990, check and recalibration again.